Free group algebras generated by symmetric elements inside division rings with involution

Javier Sánchez

IME - Universidade de São Paulo, Brazil

Supported by FAPESP Proc. 2013/07106-9

Lens, July 2, 2013

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Vitor O. Ferreira, Jairo Z. Gonçalves and J. S., *Free symmetric group algebras in division rings generated by poly-orderable groups*, to appear in J. Algebra.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Supported by FAPESP-Brazil Proc. 2009/52665-0, by CNPq-Brazil Grant 300.128/2008-8 and by FAPESP-Brazil Proc. 2009/50886-0.

Notation

• Rings are associative with 1.

- Morphisms, subrings and embeddings preserve 1.
- A division ring is a nonzero ring such that every nonzero element is invertible.
- Free groups $H = \langle X \mid \rangle$, free algebras $k \langle X \rangle$, and free group algebras k[H] are supposed to be noncommutative, i.e. $|X| \ge 2$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

If D is a division ring and R → D, we denote by D(R) the division subring of D generated by R.

Let D be a division ring with center Z.

(A) If D is finitely generated (as a division ring) over Z and $[D:Z] = \infty$, then D contains a free algebra. (Makar-Limanov)

A D F A 同 F A E F A E F A Q A

(GA) If *D* is finitely generated (as a division ring) over *Z*, and $[D:Z] = \infty$, then *D* contains a free group algebra.

Involutions

Let k be a field. Given a k-algebra A, a k-involution on A is a k-linear map *: $A \rightarrow A$ satisfying

 $(ab)^* = b^*a^*, \quad \forall a, b \in A, \qquad \text{and} \qquad (a^*)^* = a, \quad \forall a \in A.$

An element $a \in A$ is said to be symmetric if $a^* = a$.

Example

If G is a group and $\Bbbk[G]$ denotes the group algebra of G over \Bbbk

is a k-involution k[G], called the canonical involution of k[G].

Question

Let *D* be a division ring with an involution $\star: D \to D$. If *D* is finitely generated over *Z*, and $[D:Z] = \infty$, does *D* contain a free (group) algebra generated by symmetric elements?

Malcev-Neumann series ring

Definition

• (G, <) is an ordered group if G is a group and < is a total order such that for all $x, y, z \in G$

$$x < y \Rightarrow xz < yz \qquad x < y \Rightarrow zx < zy$$

• (G, <) ordered group. K a division ring, KG a group ring.

$$KG \hookrightarrow K((G, <)) = \left\{ f = \sum_{x \in G} a_x x \mid a_x \in K, \text{ supp } f \text{ is well ordered} \right\}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

K((G, <)) is a division ring, Malcev-Neumann series ring.

• *K*(*G*) is the division ring generated by *KG* inside *K*((*G*, <)).

Example

$$k\mathbb{Z} = k[t, t^{-1}] \hookrightarrow k((t)) = \left\{ \sum_{i \ge n} a_i t^i \mid a_i \in k, \ n \in \mathbb{Z} \right\}.$$

$$k(\mathbb{Z}) = k(t).$$

Main result

Theorem (Gonçalves-Ferreira-S.)

Let *G* be an orderable group, let \Bbbk be a field and let $\Bbbk G$ be the group algebra.

Denote by $\Bbbk(G)$ be the division ring generated by $\Bbbk G$ inside $\Bbbk((G, <))$.

Then the following are equivalent:

 k(G) contains a free group k-algebra freely generated by symmetric elements with respect to the canonical involution.

- $\Bbbk(G)$ is not a locally P.I. \Bbbk -algebra.
- G is not abelian.

Crossed products

Let R be a ring and G a group. A crossed product is a ring:

- As a set $RG = \{\sum_{x \in G} r_x \bar{x} \mid r_x \in R \text{ almost all } r_x = 0\}.$
- Addition: $\sum_{x \in G} r_x \bar{x} + \sum_{x \in G} s_x \bar{x} = \sum_{x \in G} (r_x + s_x) \bar{x}$.
- Multiplication:
 - Exist maps $\tau \colon G \times G \to R^{\times}$ and $\sigma \colon G \to \operatorname{Aut}(R)$ such that

$$\bar{x}\bar{y} = \tau(x,y)\overline{xy}$$
 $\bar{x}r = r^{\sigma(x)}\bar{x}.$

Examples

• If
$$G = \mathbb{Z}$$
, then $RG = R[t, t^{-1}; \alpha]$.

• $\tau(y,z) = 1$, $\sigma(y) = 1_R \quad \forall \ y, z \in G \Longrightarrow RG$ is the group ring.

Lemma

R a ring, G a group and RG a crossed product. Suppose N is a normal subgroup of G. Then

$$RG = (RN)\frac{G}{N}.$$

Locally indicable groups

Definition

A group *G* is locally indicable if for each nontrivial finitely generated subgroup *H* of *G* there exists $N \triangleleft H$ such that H/N is infinite cyclic.

Examples

- Torsion-free nilpotent groups
- (Locally) free groups
- (Levi 43) Orderable groups.
- (Howie 82, Brodskii 84) Torsion-free one-relator groups.
- Closed under extensions, cartesian products and free products.

G a locally indicable group. Let kG be a crossed product. Let H be a finitely generated subgroup of G.

There exists $N \lhd H$ such that H/N is infinite cyclic.

Let $t \in H$ such that Nt generates H/N.

Then each $h = dt^n$ for some unique $d \in N$ and $n \in \mathbb{Z}$. Thus

$$kH = kN\frac{H}{N} = \oplus kN\bar{t}^n.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The powers of \bar{t} are kN-linearly independent.

Hughes-freeness

Definitions

k a division ring, G locally indicable group. Suppose $kG \hookrightarrow D$ division ring of fractions. Then

- $kG \hookrightarrow D$ is Hughes-free if
 - for each nontrivial finitely generated subgroup H of G, and
 - for each $N \lhd H$ such that H/N is infinite cyclic, and
 - for each t such that Nt generates H/N,

then the powers of \bar{t} are left linearly independent over D(kN): i.e. for $d_0, \ldots, d_n \in D(kN)$

$$d_0 + d_1\bar{t} + \dots + d_n\bar{t}^n = 0 \Longrightarrow d_0 = d_1 = \dots = d_n = 0$$

$$\begin{split} kH &= \bigoplus kN\bar{t}^n \implies kH = kN[\bar{t},\bar{t}^{-1};\alpha] \\ &\downarrow \\ D(kN)[\bar{t},\bar{t}^{-1};\alpha] \implies D(kH) \cong Q_{cl}(D(kN)[\bar{t},\bar{t}^{-1};\alpha]) \end{split}$$

Main example of Hughes-free embeddings

Definition

G an orderable group. Fix an order < such that (G, <) ordered group. k a division ring, kG a crossed product group ring. Consider

$$E = k((G, <)) = \left\{ f = \sum_{x \in G} r_x \bar{x} \mid r_x \in k, \text{ supp } f \text{ is well ordered } \right\}$$

E is a division ring, the Mal'cev-Neumann series ring, and $kG \hookrightarrow E$.

Example

$$k\mathbb{Z} = k[t, t^{-1}; \alpha] \hookrightarrow E = k((t; \alpha)) = \Big\{ \sum_{i \ge n} a_i t^i \mid a_i \in k, \ n \in \mathbb{Z} \Big\}.$$

Notation

Denote by k(G) the division ring generated by kG inside k((G, <)).

Hughes' Theorems

Theorem (Hughes 70, Dicks-Herbera-S. 04)

k division ring, G locally indicable, kG crossed product. Suppose kG has Hughes-free division rings of fractions D_1, D_2

Then they are isomorphic division rings of fractions of kG.

Corollary

Suppose $kG \hookrightarrow D$ is Hughes-free. Let $\alpha \colon kG \to kG$ be an isomorphism of rings. Then

$$kG \xrightarrow{\alpha} kG \hookrightarrow D$$

is Hughes-free. Therefore

$$kG \xrightarrow{\alpha} kG$$
$$\int_{D}^{\alpha} \int_{D}^{\alpha} D$$

Theorem (Gonçalves-Ferreira-S.)

Let k be a division ring, let G be a locally indicable group and let kG be a crossed product. Suppose that kG has a Hughes-free division ring of fractions D. Then any involution on kG extends to a unique involution on D.

- $(kG)^{op} \cong k^{op}G^{op}$.
- $kG \hookrightarrow D$ is Hughes-free if and only if $(kG)^{op} \hookrightarrow D^{op}$ is Hughes-free.
- Let \star : $kG \rightarrow kG$ be an involution. Then \star : $kG \rightarrow kG^{op}$ is an isomorphism. Hence

Proof of the main result

Theorem (Gonçalves-Ferreira-S.)

Let G be an orderable group, let \Bbbk be a field and let $\Bbbk[G]$ be the group algebra.

Denote by $\Bbbk(G)$ the Malcev-Neumann division ring of fractions of $\Bbbk[G]$. Then the following are equivalent:

- $\Bbbk(G)$ is not a locally P.I. \Bbbk -algebra.
- G is not abelian.

Free monoid case

Let $x, y \in G$ such that generate a free monoid. Let $H = \langle x, y \rangle$ be the group they generate. Let $N \lhd H$ such that $H/N = \langle Nt \rangle$ is infinite-cyclic.

- By Hughes-freeness $\Bbbk(H) \cong \Bbbk(N)(t; \alpha) \hookrightarrow \Bbbk(N)((t; \alpha))$
- We can suppose $x = ut^m$ and $y = vt^n$ with $n, m \ge 1$.

•
$$f = x^{-1} + x = (1 + x^2)x^{-1}$$
, $g = y^{-1} + y = (1 + y^2)y^{-1}$.

•
$$f^{-1} = x(1+x^2)^{-1}$$
 and $g^{-1} = y(1+y^2)^{-1}$

$$f^{-1} = ut^m + \sum_{i \geq m+1} \alpha_i t^i \quad \text{and} \quad g^{-1} = vt^n + \sum_{j \geq n+1} \beta_j t^j.$$

f⁻¹ and g⁻¹ are symmetric and generate a free k-algebra.
1 + f⁻¹ and 1 + g⁻¹ generate a free group k-algebra. (Lichtman)

No free monoid case: Important particular case

Theorem (Gonçalves-Ferreira-S.)

Let \Bbbk be a field and consider the group

$$G = \langle x, y : [[x, y], x] = [[x, y], y] = 1 \rangle.$$

Let D denote the Ore field of fractions of the group algebra $\Bbbk[G]$. Then

$$1+y(1-y)^{-2}$$
 and $1+y(1-y)^{-2}x(1-x)^{-2}y(1-y)^{-2}$

are symmetric elements with respect to the canonical involution on D and freely generate a free group \Bbbk -algebra in D.

Lemma (S.)

Let *G* be a noncommutative orderable group. If *G* does not contain a free monoid, then there exist $x, y \in G$ such that the group $H = \langle x, y \rangle$ contains a normal subgroup *T* such that H/T is torsion-free nilpotent of class two.

No free monoid case: General case

 Let x, y ∈ G such that the group H = ⟨x, y⟩ contains a normal subgroup T such that H/T is torsion-free nilpotent of class two.

- $\exists A_1, B_1, A_2, B_2 \in \mathbb{k}[\frac{H}{T}]$ such that $A_1B_1^{-1}, A_2B_2^{-1} \in \mathbb{k}(\frac{H}{T})$ are symmetric that generate a free group algebra.
- $\exists \hat{A}_1, \hat{B}_1, \hat{A}_2, \hat{B}_2 \in \Bbbk[T]_T^H = \Bbbk[H]$ such that $\hat{A}_1 \hat{B}_1^{-1}, \hat{A}_2 \hat{B}_2^{-1} \in \Bbbk(H) = \Bbbk(T)(\frac{H}{T})$ are symmetric that generate a free group algebra.